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1. - INTRODUCTION

The prediétion oflboundary iayégiééﬁarétion coﬁtinués to be an important
basic research problem in fluid dyﬁamics with many applications in aerodyna-
mics, propulsion, fluidics devices,retc, The numerous théofeticél énd éﬁperi— ~
mental studies that have been carried out to date have'establiShed three
important features of this problem that cannot be accounted for in the classi-
¢al boundary layer theery approach. (1) Viscous-inviscid interaction:"the
streamwise pressure.gradient is not prescribed but is an unknown determined
by the boundary layer displacement fhiCKness distribution solution. . {2) Up-
_stream influence: .the local. behavior at. some station x is affected by
conditions downstream as well as-those ﬁpstream, the mathematical charactef-
of the flow being of an ellip;ic nature rather than parabolie (this is true
even for a supersonic inviscid flow). (3)'Regions of reversed flow and possi-
ble reattachment: these introduce the well-known possibility of a singularity
where the wall shear vanishes plug the numerical difficulties associated with
imbedded regions of reversed flow near the surface. To complement-the fariﬁﬁs
numerical methods that are currently being developed to treat these features
'(Ref;_l,z,w ) the present.paper describes an approximate amalytical appxoach to .

the boundary layer-separation-problem for subsonic®laminar separation bubble-type

i

flows.3
Our_aﬁalysis is based on a triple—deck’flow model which is an extension
of the earlier methods of Von Karman and M:ijllikran,AVStratford,5 and CurI_Le6 to
include the aforementioned effects of viscous-inviscid intevraction, upstream
ihfluence, and flow reversal and reattachment. The boundary layer is split up
into two appropriatély—matcﬂed regions: ”arthin viscous sublayer region of

negligable inertia near the wall uaderneath a thick outer layer of nearly
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1. INTRODUCTION

The prediction of Eoundary layer deceleration and separation in regions of
adverse pressure gradient continues to be an unsolved problem of fundamental
practical importance in aerodynamics. Separation, for example, not only signi-~
ficantly influences the local flow field but also-can influence the overall
forces and moments acting on‘é wing or body. Although significant prégress has
been made in the theory of mon-separated laminar and turbulent flows, existing
methods have a number of deficiences which introduce serious drawbacks, when
separation occurs: (a)° the flow model breaks d&wn under conditions of vanish-
ingly-small wall shear and re;;rsed flow: (b) they neglect the important
effect of viscous-inviscid interaction induced by the bound&ry layer displace-
ment thickness growth, including the attendant upstream influence; (c) very
little has been done to treat the turbulent case; (d) the numefical approaches
involved are usually very lengthy and expensive to run and totally impractical
for use in advanced engineering design calculations and parametric studies.

As a first step toward remedying these deficiences, a new approximate three-
lavered theonetical flow model of boundary léyer separation including viscous-
invigcid dnteraction was conceived for the case of subsonic two dimensional
steady laminar flow (see Fig. 1). In this approéch, the boundary layer is
split up into two éppropriately—matched regions! a thin viscous sublayer region
(having négligable inertia} near the wall overlaid by a thick-outer laver of
nearly inviscid (but highly rotational) flow. Inviscid interaction is accounted
for by coupling the perturbed inviscid flow to the tctal displa;ement thickneés
growth of the boundary layer §%(x) using a linearized source distribution rep-
reséntation of 6*%(x). The purpose of the research project was to study the
theoretical development and numerical implementation of this "triple deck"

flow model concept for laminar boundary layer separation problems,



with the ultimate follow-on goal.of extending it to the case of fully developed

two-dimensional turbulent flow separation.

2. PRESENT STATUS OF WORK

The proposed triple deck interactive model for 1amiﬂar flow has been
completely worked out and some promising preliminary numefical‘results obtained,
including development of a small perturbation analysis verify;ng the concept of
the suggested iterative caleulation approach. These results were decumented
and presented in an ATAA paper last summer; a copy of this, which contains all
the details of the medel analysis;is given in the Appendix.

During the remainder of last summer, the numerical feasibility of the model
for treating separated flow conditions was further established, albeit in a very
inefficient form uusuited for routine applications. Subsequently, working at
a very low lével of effort owing to a lack of student programmer time, we.have
been slowly developing a far more efficient algorithm to implement the inter-

active model.

\
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SUBSONIC LAMINAR‘BOUNDARY:LAYER”SEPARAIION

AND REATTACHMENT WITH VISCOUS=INVISCID INTERACTION*®

Abstract

A ‘theory 1is developed for nonsimilar lamlnar boundary layers with separa-
tion, reversed flow and reattachment 1nc1ud1ng global subsonlc v1scous—1nv1sc1d
1nteract10n and upstream influence with appllcatlon to separatiom bubble pro-
‘blems., The approach is based on an approximate trlple-deck flow analy51s which
provides a unified, non—51ngu1ar analytlcal model over a wzde range of both
attached and reversed flow states. The dlsplacement effect on the 1nviscid
flow is represented by a thin airfoil 1ntegral with a leading edge correctlon
. by Lighthill's rule. A closed form solution of this model is glven which shows
the. essentlal features of the problem and supports the numerlcal approoch A
global iteration calculation method is devised which is free from the usual
Crocco-Lees critical'points occuring in interaction problems. _Application to
the:case of a linearly-decelerating basic inviscid flow is discussed including

some preliminary numerical results.

. #This work was partLally supported by AFOSR under grant 72-2173 and by the NASA
Langley Research (enter uvnder grant NGR 47-004~119;: theiy support is gratefuly
acknowledged. : :
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NOMENCLATURE

a Parameter related to inner layer thickness

c Characteristic length
’ ‘g2 2
¢, 2(p-p ) fou = 1—(ue/ue )
2 o : o
‘pf lem.Je
o . _
N - Parameter in inner layer solution
P ~ Statdc pressure
Rex,c R, x/u, Py, .C/_u
o o
T T/rB
o Velocity component along x
v o Velocity component along y (normal to sﬁrface)
X,¥ - Coordinates along and normal to sufface, respectivélx,with-

% = X/L being non-dimensional.

& Boundary laver thickness

& Local Blasius thickness = 5.2/%yklec X )1[4 Re 1z
B _ p,basic c
&% Displacement thickness
1/4 1/2
* -
5 1.73%/(1 Cy paste) | Fe
B* Momentum thickness ‘
i Coefficient of viscosity
¥ Stream function, location of streamline
Cp _ Deﬁsity
v Kinematic wviscosity
T ' Wall shear stress = u(au/ay)w
T Local flat plate value = .33Z2pu 2 (1-C . )3/4Re -1/2
B e, P,basic x
Subscripts
basic prescribed non~interacted pressure distribution values
B Local Blasius {flat plate) valﬁe

Vit



c Cut-off point of basic pressure gradient

F End of Interaction Region -

h} Location of innar-—outer layer interface

L Effective flat plate origin for favorable initial pressure gradient
T Effeptive flat plate origin for.downstregm of interaction. .

il Maximhm,ue_station .

o Start.of adverse pressure gradient

sep Seﬁafaticn point |

1 Start of interaction

v Conditions at wall

[



inviScid (but highly rota;ional)‘floﬁ. 'Iﬁviscid ipteraﬁfiéﬁrisraccﬁunted'fof
by coupling the perturbed inviscid botential flow outside the boundary layer
to the displacement'thickﬁesé éféwth 5*(x). Tﬁere are sevefal reasons forlpur
Selgction of this approach. First, in the absence of viscous interaction
effects the two-deck boundary layer model has been found to give very accurate
predictions of botﬁ laminar and turbulent boundary layer behavior in adverse
pressuré gradients up to separation for a ﬁide variety of flowé including those
with surface mass transfer.6 Hence its extension to include interaction, up-—
stream iﬁfluence and separated flow would provide a valuable and relatively
inexpen51ve tool for maklng engineering analyses of separatlng flow.‘ Second,
our three-layer model approach is strongly suggested by the recent inVestLga— '
-tion of Stewartson and Williamsz,who show that the asymptotic structure of
incipiently-separéting_lamin&t'boundary layer flow at high Reynolds numbers
does indeed have such a triple-deck chavacter. Third, the relatlve simplicity
of the analysis provides a clear insight to all the essential features and
difficulties of the separation problem and.lends itself to very stréight;"
foreward and inexpensive numerical implementation.

In Section 2 the basic simplifying assumptions, the analytiecal formula-
. tion and the =alient features of the model are descrLbed It is shown that
~the mcdel has a heretofore- unrecognized double*branched solution charactur B
that enables it to pass through separatlon and reattachment without singulari—‘
ties and provide-a_unified déscription of a wide range of both attached and
separated flow states. Section 3 outlines a closed form method of solution
which displays all the essentiai features of the problem and which also sup~
ports our subsequent numerical apﬁroach. In Section 4, a global-iteration
technique of applying_thisrmodel to the numefical calculation of subsonic

- viscous-inviscid interaction problems .in adverse pressure gradients including



separation is thén-diécussed, inciuding some preliminar& results for. separa- '
tion bubblas occuring in a linearly-decelerating basic. inviscid flow, . We
conclude in Section 5 with a brief discﬁssion of further improvements and

extensions of the present theory.'

2. TFORMULATION OF ANALYSIS

Agzumptions

We first‘introduce a number of basic simplifying assumptions. a) As a
convenient idealiz;tion to illustrate the essential features of outr approach,
the flow is assumed two-dimensional and steady (neiﬁher of which is strictly
true in practice)3’8 and incompressible, although the present théory can be
readily extended to compressible subsonic transonic or supersonic flow in-
cluding heat transfer. b} The usual high Reynolds number bqundary layer~type
" approximations are aﬂopted Including the neglect of second crder curvature
effects. While this is not strictly valid near separation and reattachment
points, it does not give significant errors unless the "fine structure“ of
the flow around these points is of interest. Indeed, the recent studies of

Lees and Kleinburg,g Stewartson, 10

and Werle and Davisll have all shown that
the use of boundary layer equations to predict separating flows 1s acéeptable
provided the pressure distributionris determined by viécoﬁs—inviscid interac-
tion and the separation bubble region ié thin. c¢) The flow is assumed to be
laminar which is an idealization to illustrate the basic features of the
analytical method and of course is of praétical interest for low Reynolds

number cases. The resulting analysisrappears readily eﬁtendable to the tur-
bulent case with the use of a suitable eddy viscosity model, since the essential

physical features of the approach are independent of the details of the

viscosity law. d) - The global wiscous—inviscid interaction is described by



coupling the perturbed inviscid fiow to the boundaryvlajer-by-means~0f‘A--
small diéturbance gource distribution ("thin.airfbil") model of the displace-
ment thickness effect, thereby including consideratiohrof the upstream in—.
fluence »of downstream events {such as_reattachment)*. .(e)'Ihe-types of flow- -
consldered here are theose in which fhe basic non-interacting pressure distribu-

ticn Cp,basic is zero in the r?glon;ors x £ xoifo}lowed-by~an=arbitrary'uzf

but finite length of continuous pfessure rise over xc_g x < X, see Fig. 1

(this zero pressure gradient condition for x <'xo will be subsequently relaxed

as discussed below. In the constant C region downstream of this cut-
p,basic

off point X, the boundary layer is assumed to approach a flat plate behavior

appropriate to this new pressure level. Although in the present study we em-

rhasize the case of reéttaching laminar separation bubbles, the general approach

is also applicable to other types of downstream_bouqdary conditions such as

those pertaining to a wake.

Flow Model-Governing Equations -

Following the earlier ideas of Von Karman and Millikan as improved by
Stratford and Curle, and more recently justified by Stewartsons asymptotic
analyses of viscous interacrion effects, the flow'ipto an adversé pregsitre
gradient region can be divided into three essential layers (see-Fig. '1). Thé
viscous boundary layer region for‘x > xo.is divided'into two strata: -a thin
-"local equilibriun" sublayer 0 < y < ¥4 near the surface where inertia effects
are negligible, overlaid by a thick outer layer of essentially inviscid buﬁ

rotational flow with a small viscous total head loss that is conveniently

- % A vortex sheet model could also be used; in fact the present boundary layer
model can be mated to any suitable numerical potential flow progran (gueh
‘as Hess and Smithl2). : C



approximated by a local flat plate value.  The third layer is-tﬁe disturbeﬁ
outer invisci& flow which globally interacts with-the boundarf’layer; Since
the analytical formulation bf this two-layered boundary layer model has already
been discussed in detail by several authors,s’s'qnly a brief outline need be given
here with emphasis on the new features not considered heretofére.
Regarding the thick nearly-inviscid rotational outer flow layer y 2 yj
- the velocity along any streamline x, ¥ is approximated by the variable total
head Bernouli equation

2. 2, 2(p-p,)

CONPERCA N eN

where ug is the local flat plate (Blasius) solution pertaining ;o Cp,basic
which approximately accounts for the viscous total head loss along the stream-
line. Successive differentiations of Eq. (1) with respect to ¢ and neglecﬁing '

the lateral pressure gradient yields the two equations
o) - (2 | (2)
A9y 3y : ' .
X, ¥ Xy

u - '
T ouy 2 32
X,y X, 0 - '

The flow in the thin inner layer 0 £ ¥ £ yj(x) has negligible inertia and
lateral pressure gradient (pW = pj) and following Cui:le6 may be described
by the following velocity profile which satisfies the momentum Eqn. as

y + O:

u =1 y/u + (dp/dx) YZ/ZU + alx) YN/u : - (4)



where 1 =‘"(BUIBY)W is tﬁe wall shear s;ress,‘the»function-a(x)his related to .
the unknown valué of yj as determined by matching with the outef solution,

and N is an arbitrary parameter with N > 3. The two layers are matched by
requiring that ¥, u, 3u/dy and azulayz each be~continucus at y = yj, these
conditions being Sufficient to determine T, a{x), yi and ¢j with N appearing-
as an arbitrary profile parameter (the value N = '3.043 recommended by\CurleG_ﬂ
for unseparated nonuinteracting flows in adverse pressure gradients is used
here without change). As in Stratford's original WOrk;5 the inner layer is
presumed to lie Wighin the linear region of the Blasius profile; consequently
the aforementioned inner—outer matching yields the following approximate

<analztica1 relationship between the skin-friction and surface pressure dis-—

tribution:

5 . 2._ SR I ,
xc @c /dx) = .0122 (1-T)° I‘1 ¢ 2L g W) (+3) (53
PN P [ (N°+3) AN (1) (N-2)
= 0104 (1-T)°(142.02T) for N = 3.064 - (5b)

3/4 o -1/2_

where T = /v, with 1, = .332 'puio'(l ) Re_ It iz emphasized

={J .
B B p,baszic

that this relation is perfectly general as regards the n#ture of the pressure
field; it refers either to a presgribed or freelyfinteracting Cp(x)..

Although Curle has shown that tﬁe assumptidn ugp = TB‘y/u in'the innerk
layer limits the pressure coefficient to values less than about b.ll, both his
results and our own calculations indicate that accurate predictions of'sépara—

tion from Eg. (5) maylstili be obtained for values of pressure coefficient at
geparation és high as 0.25. Moreouer; since viscous~-inviscid interaction

further reduces the pressure level near separation {see below), this limitation



on Eg., 5 is.not an important one in the present study.r A more significént
limitation stems froﬁ the ﬁeglect of the'inertié effect (flow histopy) of the
inner layer; Eq{ (3 consequéntly preducts that % = TB.wherever the local
pressure-gradient'vanishes, which certainly yields inaccurate results for
prescribed pressure distributions'with maxima or minima or for viscous-ipviscid
interactions invelving local overshoots in the pressure;

The unknown inner layer thickness is given by the éforementioned matching

as

_N-1 (_l“T)'Cf ,B

Y3 T w2 | dC Tax (6)

with a limiting value of zero as the pressure gradient vanishes. The corre-
sponding total boundary layer displacement thickness is composed of contribu-—
tions from the inner and outer layer regions as follows:

Yj u : u

gx =} |1 -———)dy + 1 - -2uter gy (7a)

° 3
where § is the effective edge of the boundary layer (Appendix A). The dominant
contribution to the displacement thickness is from the inner layer. Using

Eqgs. (1)3;(4);aqd (6),”Eq. (7a) becomes . s

—

: (1+T) ‘ -
I IS Riind _ =Bl [ _ ]
. 5% | Y3 1. BT + 8 | 1 Ce) Cp/(l CP) dy (7b)
X

As shown in Appendix A, this can be approximated by the following expression

which proves useful later:



s =6 45 -5+ (1-m) I ¢ 2\

which correctly passes over to the result &% - 6B* in the absence of pressure
gradient (yj -+ Oz_where GB and §§ are the local fiat blate digplacement thick-
nesses. . |

| The effect of the glabal interaction between the boundary layer and the.
external inviscid flow is treated by correcting the original potential flow
fpr the total bouhdary layer displacemént effect following the approach pre-
viously used successfully by‘a number of investigators, in which the velocity
field perturbation due to the displacement thickness is represenfed by an
equivalent sourcé—sink digtribution. Thus, fbr example, using the small dis-
turbance approximation to Bernéuli's equation and evaluating the source-sink
disééibution effect at ¥y = 6% as recommended by Preston13 (who found that
th{s g;ve good agreement_with'experiment for airfoil calculations), the in-

teracting pressure field can be expressed as C

= Cp,basic + ACp where

oo

N -£)22% (gyde
&Cp = 1-C dx -

i p.basic

o -5y 248" ()% h

is the local correction to the prescribea basic_(nbn-interatting) pressure due
to the entire displacement thickness with £ the dummy variable of integration.
Note that the integral is not singular at the SOurcé point £ = X, which is
advantageous in the numerical work. As shown in Appendix B, ekamination of the
limits and integration by parts enables Eg. £a to be expressed for computational

purposes in the form



X X
AC = 2 1- Cp,basu: Sk (x-F,.) - i~ )2- 6*2]6*‘1 .l(Bb)
P L (X-&) +(5 ) ' [{X_E) +6*2 2 .
% g

14
where X, + 0 and Xe ;re the effective stagt and end, respectively, of the
viscous~inviscid interaction reglon with Xe >3 X, Alternatively, using the
classical "thin airfeil integral" formulation of ACP in which the source~sink
effect 1s evaluated along y = 0 instead of y = &% with the resultlng leading
edge singularity eliminated by the so-called Lighthill rule correction factor14,

(8a) reduces to the following well-known singular integral equatrion

requiring the use of the Cauchy priﬁcipal value at x = E:

L2 v (asx/exyae |
A('p B T \Kl Cp,basic)(}&ro) X & ' (8e)
‘ ¢
" where r: = (5£%2/2x) = 1.5 Re -1 . 1.562- Excluding the small higher order
o B x+0 ' c : ' ”

region of size r near the leading edge, this integral has the important pror
perty of vanishing identically for the flat plate parabolic distribution 8% =
GB*-ﬁ1/§-+E hence from Eq. 7C we see that only the pressure gradient effect

on &% effectively contributes to the viscous interaction-induced pressure field.

Important Features Pertaining to Separation

For illustrative purposes, we consider the case of linearly-retarded flow

u, /u =(1 - x)[C

. = (2-x)x] for which an exact solution of the boundary

p,basic i : ‘

layer equatlons has been obtained by Howarth. 15 The resulting solution of
(5) for the shear stress distribution along the wall is shown in Fig. 2.

From this Figure we can perceive several.important features of the present approach.

+This result may be understood from the fact that there is no pressure gradient
immediately downstream of the nose of a parabola in incompressible flow.



First, we‘sée that the two-layer boundary layer model-is in excellent

agreement with the exact solution, giving an accurate account of the decrease

in skin friction up to separation including the location of separatilon itself

around xsep £ .,12. Actually, the two-layer result continues slightly downstream

of this xsep corresponding to a small reversed flow (further comment on this is

given below).

Second, it is observed in Fig. 2 that the solution is double-valued: for
each value of x and C_ one cbtains two values of shear stress, one positive

and one nepative, corresponding to attached and reversed flows, respectively

" (note that Eg. 5b is a quartic inm T with either a pair of real and a pair of

imaginary roOts or two pairs of imaginary roots). Moreover the ﬁpper and lower

"branches" of this solution are seen to be continuously connected. This

hervetofore-overlooked double~valued nature of the two-layer boundary layer

model is analogous to the well-known double-branched similarity solutions of the

boundary layer equations for negative values-.of the pressure gradient para-

-

'meter.lo Now, such a feature endows the present analytical approach with the

inherent capability of giving a unified continuously-comnected description of
both attached and full-separated flow states provided we "unhook" the pressure
field in the skin friction-pressure relation from a prescribed explicit de-
pendence on x and instead allow it to be coupled to the Boﬁndary layer by
viscous~inviscid interaction.* Thus, by interpreting Eq. 5 or Fig. 2 as a 71

vs. Cp locus (instead of 1 vs. x) the physical solution can move along AB

with an increasing pressure toward separation, then from the upper to the

lower branch through separation into a separated flow region along BC with:

17 S
# In the same mapnetr ag Lees and Reeves  employed self-similar boundary layer
solutions in supersonic viscous-inviscid interaction problems by "unhooking”
them from the pressure gradient parameter.

10



decreasing interaction pressure,-theﬁ back along CB through rising pressure .
toward reattachment and through reattachment.followed by downstream post-—
reattachment relaxation with decreasing pressure along BA.

Third, it is important to note that unlike previous éolutions of the full
boundary layver equations, the approximate two-layer boundary layer ﬁodel does
not give a singulafity at the separation point; this is evident in Fig. 2,
where tﬁe slope of the wall shear stress at separation (dr/dx) sep is seen to
be finite (this can be alsc be verified by divect differentiation of Eq. 5
with respect to x). T Interestingly enough this result is in qualitative agree-
ment w1th experimental data and the predictions of exact numerxcal solutions of

the Navier—Stokes equatlons in adverse pressure gradients 18- 20, both of which

indicate that dt/dx is finite (though large) as T + 0. LEEZl has shown'in

fact that the usual boundary layer solution528 giviﬁg-a separation point singu-=
larity are not valid in the.immediate v;cinity of xsep; vhen this is corrected,
a regular behavior through sepaﬁation is obtained. Indeed, he further shows
by an asyﬁptotic anaiysis of the ﬁavier-Stokes equations near Xsep that to the
leading order of approximation the viscous flow near the surface is described
by precisely the inmer layer flow model used herein. Additional support for

at least the approximate corvectness of the present model on this point can be
obtained by examining the zero streamline y = 0 whose locus indicates where

the flow separates from the surface: integrating the inner velocity profiie ’
Eq. (4) with respect to y and using the matching relations, this locus is found
to be governed by yw=0 =0 for T > 0 and in a reversed flow reglon by the

relation

¥ The behavior near separation deoes not depend sensitively on N; for example,
the cube root of the right side of Eq. 5 evaluated at t = O (which is
approximately proportional to x for linearly-retarded flow) decreases
by only 16% when N is changed £¥6h 3 to 4.

11



. dC; r %;ﬁ—l . . :
Mee 5t dx |V T L N =0 ()
? N(N "l)yj =0

Differentiating this with respect to x and setting y¢=0 =0 at t = 0, Eq. (9)

predicts that the separation streamline leaves the surface at a finite angle ¥y

dy
tany —< o= O) = -3 (dyi;) (10)

--which under the assumption dp/dy = 0 is in exact agreement with the well-known

value derived from the full Navier-Stokes equations by Oswatiésch{zz Both separa-

given by

tion and reattachment occur in a non-singular manneraét a well-defined acute . -
angle to the surface.

Aside from Fig. 2., a fourth noteworthy aspect of the present analysis is
the relative structure of the flow in a separation region predicted by the inner
layer flow model. Thus, in addition to the aforementioned zero streamline, the
zero velocity locus fhat delineates the extent of the reversed flow region is -

found Eq. (4) to be governed by

ac yN31 ‘
2'l;"":f,B + ax |¥ ~ N(N—l)‘ v H-2 = (11)

In addition the conesponding zero velocity gradient locus (ou/fsy = 0) where the

maximum reversed flow speed occurs is given by

. ON-1 : _
--P- - {N=- :y : = '
R ol b (N-1)x =55 0 (12)
73 B I

12



Since these locii derive from the inner layer solution, they must all lie

within D 2y £y

j and this is indeed readily verified to be the case by com-
paring Eq. (6). Moreover, Egqs. (19), (11) and (12) predict that the ordinates
(Y)¢=0’ (y)u=0 and (y>§u/ay=0 are appro%imately in the ratio 3:2:1 independent
of d; this agrees with the relaiive size of these ordinates shown in Leal's
Navier—Stokes solutions.zo | |
Fifth, it should be noted that goveraning model equations automatically
yield the correct downstream solution {namely a flat.plate boundary layer

corresponding to Cp (xc)] far downstream where the pressure gradient

,basic

vanishes; for when de/dx -+ 0 with x >> xé, Eqs. 5 and 6 give T ~ 1, yj »+ 0
while Egqs. (7) yields the correct corresponding displacement thickness.

Sixth, shown_in_Appendix B the displacement thickness integral in Eq. 8b 
has the iwportant property of becoming vanishing small (with a concemittantly-
:vanishing‘x—derivative) at both x = %y and % = R provided Xy and xf'are
chozen sufficiently small and large, respectively. Comsequently, the inter-
action-induced pressure Aﬁp aﬁd its streamwise gradient and hence (by Egs. 3

and 7) the corresponding shear and displacement perturbations all automatically.

vanish at Xy and x,. to any desired degree of accuracy.
A

Allowance for an Initial Pressure Gradient

The foregeing aﬁalysis can be extended to_include boﬁndary-layer flows
with a non-zero upstream favofable pressure grédient history in the region‘
0<% <x by adapting the equivalent flat plate initial condition technique
- of Curle.6 Thus if the inviscid flow velocity_distributidn ue(x) increases
to a maximum u at the pressure minimum station % = X the boundary lawer

m

velcecity profile at X will be very similar to a Blagiuvs profile based on

iz determined by

some equlvalent length X "X if the equivalent origin X

13



- Xm
requiring the same momentum thickness g% at % Equating 9*2 ='}f1%a 6 Jf,t‘
. _ ' ™ 0
uede given by the accurate Thwaites method23 to the equivalent flat plate
value .45 1fuem(xm~xL) yields
Xm 5 :
X = X o= (u fu ) dx : - (13)
m e e
m
o _
The subzquent boundary layer development in the adverse pressure gradient
region may then be treated by the foregoing model provided x is replaced by
X =K - X and the skin friction and the pressure coefficient are defiped in
terms of conditions at X instead of x .
The above equivalent origin approach can also be used to partially account
for the "memory" effect of the upstream adverse pressure gradient history on
the far downstream post-reaﬁtachmentVconditions in the case of the viscous-—

inviscid interaction separation bubble problem, as discussed below.
3. ANALYTICAL SOLUTION

An analytical solution of the foregoing theoretical flow model can be
obtained which is a very helpful guide in constructing our numerical approach.
_ 7o bring out the essential ideas invelved, we édOpt the approximate displace-
ment thlckness expression (7c)_and neglect the 6*2 term in the integrand
demominatorrof Eq. (8) [neither of these gimplifications alters the basic
correctness of the-sﬁbsequEnt analysis]; then gsing the values of & and Y3

given by Appendix A and Eq. (6), respectively, and noting that'GB* = 1.73 xlfza

)—1/4 -1/2

where £ == Re

"(l'cp,basic

rt

, we obtain from Egs. (5b), (7¢c) and (8) the

following trio of equations that characterize our interacting triple-deck flow '

model:
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_xz(dc_:p/dx}ch' = 0104 (l1+2';02'r)(1-'.r)3 RS (14)

(%3

[ Qpu——— R FTY77 Py YL:

Cp - p,basic e Cp,basic_[ , x~ . (13
: f 66 .086(1T) (1c) ' 4 .

&% = .73 + & * = ¢ d(x) (16)

'-;'qg-l - (1 ~C ) {x dC /dx) :

Eq. {14) characﬁerizeéwtﬁe 5veréil'§fessurefshear force Ealaﬁée of the boundary
layer while Eq. (15) introduces the global effect of the displacement thickness
growth ou the pressure distribution in subsonic flow, as well as containing the
"bagic” non-interacting pressure distribution that characterizes the particular
prﬁblem at hand. |
The trio {14)-(16) in generalbconstitutes a difficult integro-differential
equation sysfem tb be soived for the three unknowns T, CP and 8%, However, the
presence of the parameter € and tﬁe fact that it is very small under precisaly
the high Reynolds number conditions appropriate to the present model suggests
that a perturbation approach is feasible+ in which the solution is expanded in

ascending powers of e, as follows:

CP.= Cp basic T € Acpl + € Asz S R {17a)
T =T +eT + e:zT + | {17b)
basic 1 2 vt
k= e d re2a o+ - (17¢)
basgic A e .

+ A similar approach was successfuly used by Ting24 to solve a massive blowing
problem having an analogous mathematical structure to the present ome.



That:is, since the displacemeﬁt effect‘(within‘pﬁe accuracy eof the boundary '
layer approkimation) and henge the induced pressure are everywhere of small

order ¢, the leading appro#imation is the non~interacting solution; the small
(order ¢) first interactive "¢orrection" to this is obtained in terms of the
6% for the- "basic" flow. Thus, for-example, substitution of expansions (17)

into Eqs. (14)-(17) yield to first order that

' [dfd )/dxl : ‘
= - .g_ ¥Yi—- ba Sl(‘
Acpl v 'L Cp,basic L T x - E dg (18)
- (l-—-T ;o202 L) AC 4 o dﬁCplldx
1 3= 2 02(1 ba81c) Cp,basic dcp,basic/

(19)

with analogous expressions for Acp2 (involving an integral of d dlldx) and ng
etc.% This procedure has thurrconverted the original problem imvolving an
integral equation into a succession of'éﬁa&ratures of known displacement
thickness functions.

It is p01nted out that the "basic" solution appeafing in the foregoing
analysis can be approxlmated by‘any reasonable dlétrlbutlon w1thout
altering the essentialrcnnrectness or acecuracy of the analysis, at léast to
first order in the interaction effects. Consequently, in the case where separa-
tion would oceur in the basic flow, we may use an intelligent non-singular pro-
jectlve estimate of the &% distribution across the length of the reversed flow
in eveluating Eqs. (18) and (19). 1In this manner, our analytlcal solutlon

provides the suggestion of (and support for) the streamwlse-pass iterative

method of numerical solution discussed in the next section.

..!,.

Tt is understood that & 1n € type terms may intervene between ¢ aud e? in
Eqs. £17).
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4, NUMERICAL SOLUTION SCHEME

Global Iteration Approach

We have seen in Section 2 that the present triple-deck flow model has the‘
inherent capability of giving a unifiled, continuously-connected descriﬁéion-of
both attached and fully-separated flow states provided we "unhook" the pressure
field in the skin friction-pressure relation from a preééfibed explicit der-u”
pendence on x and instead allow it to be coupled to the boundary layer by global
viscous—inviscid interaction. The resulting solution can be thought of as
being defined by the intersection of tﬁo locii (see Fig.-B): therlocus of all
posgible shear vs. pressure gradient values for the boundary layer as defined
by Eq. 5, and the "interaction" locii of T vs. pressure at various x implied by
the integral of 6*(T,Cp) in Eq. 8. The numerical solution of this problem is a
difficult one since inclusion of the global subsoﬁic interaction makes the pro-
blem‘quasi—elliptic aad hence introdiuces the:need to impose downstream boundary
conditions. However, the discussion in Section 3 suggests that the most ex-
pedient approach is to use a global jteration method involving successively-
refinedrstreamwise paésesQ A very similar type of scheme has been proposed
recently by Lees and Su for solving a stratified flow separation problem25 and
by Jobe and Bu?ggraf for interacting tfailing edge flow.26

‘The manner of implementing this approach is as follows. Starting.with a
prescribed basic pressure distribution (which defines the specific problem)},
the complete non-interactive solution is calculatedKalong the body, étopping.

in the event of incipient separation at some station X = X slightly upstream

1
of the separation point. Following Catherall and Mangler27 we then projéct

from this statioh a first estimate of the dowmstream behavior of §% throughout

the entire interaction zone assuming a regular continuous behavior; specifically,

17



we uéed a cubic polynominal pfojection 8% = §% (xl) + al(x—xl) + az-(x-—xl)2 +
aa(x—-xl)3 where a, = (d5*/d¥}%1 while a, and a, are determined by requiring
that 6% and d6%/dx be equal to local flat plate values at some first guess of
the downstream interaction—termination distance Xge Having such a reasonably—
beﬁaved first approximation forré*(xj over the entire flow length, one can
make a corresponding smoothed first egtimafe éf the displacement effect Acpl
on the pressure distributlon and thereby provide a basis for performing another
stresmwise pass in which the viscous-inviscid interaction is now included.
According to our anélytical solution (Eq. 17) and previous discussion, the
results so.obta;ned for T. and Cp = ‘Cp,basic + Acpl should in fact be a2 fairly
good first approximation to the finai correct interactive values when the
Reynolds number is large, provided xf'has been chosen sufficiently large.

The second streamwise pass through is begun at some suitably smail value
of the upstream interaction~starting poigt xi.' Retaining the aforementioned
first guess for Xe the numeriéally~smoothed,interaction—modified pressure dis—

tribution Cp] = + (Acp)l (where subscript 1 denotes the first itera-

Cp,basic
tion) is used in Eq. (5b) to obtain an improved estimatelof the skin friction
distribution. Separation and penetration intc the reverséd flow region may now
be allowed along the negative T branch of the T vs. Cp-curve (such as segment
BC in Fig. 2); as tﬁe flow proceeds downstream the effect of interaction dies
down and the solution moves back through reattachment, relaxing toward allocal

flat plate behavior at the constant C .c(xc) until finally the interaction

p,basi

effectively ceases at the downstream location Xeo Correspondingly, a new cor-

rected displacement thickness distribution can be calculated directly from

4

Eq. 7 (the polynomial prejection mow being discarded) and hence an improved

interaction pressure corraction (ACP)2 for the second streamwise pass, and so .

18



on., The modified pressure distribution for this second and all subsequent

passes may be calculated by correcting the previous result, avoiding further

direct use of C ., (x); thus for the n-th iteration with n 2 2, C (x) =
p,basic i - p.n

C {(x) + (AC - AC ). These iterative streamwise passesg are carried
P,0-1 P, p,n-1

out until the solutrion no longer changes to within a specified amount. In
general{ the resulting skin friction and local pressure may not agree suf-
ficiently with the desired dovmstream houndary conditionsAagpropriate to thel
particulgr problem, implying that the original estimate of X was too small.

A series of larger Xg values are then used, each accompanied by the aforemen-
tioned sequence of streamwise pass calculations, until the downstream boundary
conditions of vanishing ACp and de/dx are satisfied to within the‘desiredu.
degree of accuracy.

There are several aspectsrof the aforementioned numerical scheme that
¢hould be noted. ({a) Owing to T and Acp being defined in reference tp the
lggﬂi_basic floﬁ,and the previously-noted property of Eq. 8 that both &Cp and
dACp/dx can be made vanishingly small at a large and small enough x = Xe and
%,y respectively, it is seen that each streamwise pass inherently satisfies
the correct initial and downstream conditions. In other words, our formulation
insures that every iteration is automatically “"tied down" to the proper non-—
interactive end points that define the basic problem. (b) In view of the
experience of Jobe and Burgrafz6 and others,zg convergence of the aforemen-—
tioned iteration process maﬁ be difficult to achieve without the use of "under-
relaxation," in which only a fraction (usually ﬁalf or less) of the correction
to 6% is fed back to obtain a new.interacted pressure. A schematic illustra-
tion of the proposed global iteration procedure involving 80% under-relaxation

ig showm in Fig. 4. (c) It is important to note that the present solution
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method does not encounter any Crocco-Lees throat-type singularity. This is

due to tﬁe‘fact that we do not handle the viscous—inviscid interaction as an
initial value problem (which Garvine30 has shown always‘léads to such a down-
stream singularity) but instead as an effective boundary value problem: ouri.
n-th iterative calculation of the in£eracting flow is always based on the

known &§%(x) and Cp(;) digtributions througﬁou£ the flow pertaining to the pre—
vioﬁs n-l streamwise pass, with the first streamwise projection done in the
manney of Catherall and Mangler.z? Shamroth‘and McDonald31 have elso shown that
thie appreach provides an\adequate treatment of upstream influence effects and
downstrear boundary conditions without introducing streamwise saddle point-type
singularities. (d) In carrying out theasolution,rit is poésible to further
improve our treatment of the post-reattachment flow by incorporating a correction:
to the effective origin seen by the flow due to its' upstream‘advérse pressure
gradient history. Thus, while in the case of an initial favorable pressure
gradient the flow quickly forgets its history, the thickening and separation

of the boundary layer associated with the traversal of an unfavorable pressure
gradient region is not so readily forgottem even by the flow well downstream of
reattachment. Hence the velocity profile at the interactiom-cessation point %e
ﬁi}l have a Blasius shape but with flat plate displacement thickness and skin
friction values based not on Xg but instead on Xe + X where Xp is gsome effec-
tive origin shift accounting for the upstream adverse pressure gradient history.
Owing td.the neglect of pressure gradient'effects on the head loss in the outer
layer (Eq. 1), the present theory does not include this memory effect. However,
x_ can be estimated from the equivalent momentum thickness technique described -

T

in Section 2. Thus we c¢btain
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) xf . ) . )
x_ 4+ x_ " = dx {(20)
ue,o

(o]

where as a first approximation in evaluating the integral, the viscous-inviscid
interaction effect on the ue(x) history has been neglected, i.e., we have used

the given basic inviscid flow solution for u,-

Some Preliminary Results

An attractive basic flow for theorticai studies of separation is the
special case of Howarth's linearly-decelerating flow15 in which the basic adverse
pressure gradient is applied right from the leading edge [that 1s, there is no
boundary layer preceeding the fressure rise: x, = 0, 6*(x0) = 0]. By cutting
of f this basic pressure gradient, reattachment and various finite lengths of
separaticn.bubble flow can be created (Brileylg has obtained some exact numeri-
cal solutions of the Navier—Siokes equations for several such cases which we
also.shall coﬁsider). The dowﬁstream boundary conditlons appropriate to this
class of flows are that the flow attain an approprlate lgégL Zero pressure
gradient with Blasius skin friction behavioer at some distance xfldownstream
follewing reattachment where interaction ceases.

The precent investigation has been addressed to the specific examples of
linearly-decelerating inviscid flow considered by Brileylg involving two dif-
ferent léngths of basic adverse pressure gradient, one of which causes separa-
tion and ome of which does not. His skin friction predictions for these cases
(labeled Two and One, respectively) are illustrated in Fig. 5.‘ It is interesting
to note that whereas Howarth's boundary layer golution predicts separation for
both csses, Brileys results predict separation further downstream with in fact
no separation at all in Case 1. This serves to emphasize that predictions of

'
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separatioﬁ by classical boundary layer solutions neglecting viscous—-inviscid
interaction are not always reliable. Note also from Case 2 that both separa—
tion and reattachment occur without any singularities.

An illustration of the typical displacement thickness obtained by the
polynomial-projection procedure used in the first streamwise pass of our pro-
posed iteration method is given in Fig. 6 for Case 2. Our first streamwise-
Projecﬁed'é* distributions for both Cases 1 and 2.(based on the crude first
estimate X; = .50 - see Fig. 5) are compared with Briley's results in Tig. 7.

In general, it appears that this "first guess" procedure yields reasonably

good results with a reasonable choice of Xee Note that the present theory does
not give quite the same value of the downstream local Blaslvs thickness because
of its very approximate account of the upstream history effect on the effective
origin.

Thg first interactive pressure correction ACp associated with tﬁe integra}
of our project 6% for Case 2 is ghown in Fig. 8a. This is a rough resglt only,
having been obtained with only a crude numerical integration routine and devoid
of the Lighthill correction for the leading edge singularity. Nevertheless,
when a smoothed—out curve fit of this result (shown dashed) is subsequently

added to C the resulting first interactive pressure distribution Cpl

p,basic’
(Fig. 8b) 1s quite reasonable: the effect of interaction has appreciably
smoothed and broadened out the basic pressure distribution so as to relieve
the adverse pressure gradient nreceeding separation (thereby explaining why
separation tends to be significantly delayed compared to classical boundary
layer theory predictibns). it can élso be seen that phis interacted pressure
digtribution tends to form a plateau in the separated flow region, although

this tendency is not as pronounced here as it would be in supersonic flew owing

to the difference in shapes that constant pressure surfaces assume in subsonic
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vs. supersonic irrotational inviscid floﬁ. Downstream, reattachment occurs:
through a continuous monotonic preséure rise. All these features are in
general agreement with experimental observation.32

Our current efforts are inveolved with improving the é:iginal implementive
techniques of the global iteration procedure (as regards a more accurate numeri-
cal evaluation of the interaction integral and incorporating underrelaxation
into the iteration scheme) so as to extend the foregoing preliminary resultsr
to iteratively-converged final answers including wall shear distributions and
velocity profiles along-the entire length of the interaction and separated flow

regions. Upon achieving this, it is then planned to run some parametric studies

of the linearly-decelerating problem varying the length and shape of thé adverse

p,basic(xc)’ Reynolds number, and ..

pressure gradient region, the value of C
allowing non-zere initizl boundary layer thickness (xo > 0). Hopefully, some

cases might also be run where at least limited comparisoms could be made with

experimental data on airfoil leading edge laminar separation hubblesBB.
5. CONCLUSION

Alﬁhqugh approximate the present theory has the virtues of sound physical
modeling of the essential flow features including viscous—ipviscid interaction
and upstream influence, an analytical formulation which is‘readily implemwented
numerically, and good engineering accuracy. The triple-deck model has ghe in-
herent capability of passing smoothly through a separation point into a reversed
flow region and back through a point of reattachment without singularities. ‘In
addition to providing a method for obtaining approximate engineering solutions
of boundary laver separation problems, the present thepry would b;.a useful

analytical tool for simulating the process of reattachment itself by providing
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suitablévfully—separated shear flow configurations., Furthermore, the present
theory may serve as a valuable aid in the development of more rigorous and
detailed exact numerical methods for high Reynolds number flows by providing
estimates of the location and mesh size requirements of the high shear and
reversed flow regions. Finally, we reemphasize that the triple—-deck model
appreach is applicable not only to flows with reattachment but alsoc appears
adaﬁtable to those where other types of downstream condition pertain such as a
wake.

Many improvements and ex£ensions on the present analysis appear possible.
For exémple, the assumption that the total head loss in the outer layer is not
influenced by the pressure gradient can be relaxed, as can the neglect of the
convective inertis effects in the inmer layer (this would enable the theory to
treat basic pressure distributions with maxima or minima). Extension can also
be méde to iﬁélude‘compressibility effects for either subsonie, transonic or
supersonic flow, including heat and mass transfer. Furthermore, it is clear
from Stratford's pioneering study of the two~1aye; model for non-interacting .
incipiently-separated turbulent boundary layersBA that the present approach can
extended to interacting turbulent flows provided a suitable eddy wviscoslty
model for the strongly—adverse‘pregsure gradient and reversed flow regions is
available. Finally, the theory can be applied to treat three dimensional flows
sinbe there is nothing jnherent in the character of either the imner or outer
layer approximations that cannot be extended to include the presence of a cross

flow.
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APPENDIX A

Approximate Expression for Displacement Thickness

A éimplified version of Eq. {7b) can be derivedey developing an analyti-
cal approximation to the integral term as follows. Noting that the radical

in the integrand is simply u , and that the equality of stream function

outer

requires u dy = quyh, we obtain

outer
8 1
L . uB
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where n = y/GB, 6B and GB* pertain to the local basic inviscid flow ue(not

il

uEO), and the Karman-Pohlhausen polynomial approximation uB(n)/ue = 2n - 2n3 +
n4 has been used to evgluate the integra}. Then by neglecting n;- and nj? ag
small compared to unity, we obtain upon subgtitution of.A—Z in Eq. (7b) the _ .
final result given by‘Eq. (7c). |

In the aforementioned expressions for 5*, the value of the conespanding
bouﬁdary layer thickness § can be estimated from the well-known Thwaiteéu

formula as

¥
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APPENDIX B

Properties of the Displacenent Thickness Integral

The induced pressure field is governed by the global effect of the dis-
placement thickness as showm in Eg, 8, Assuming for the moment that the viscous
interaction~induced pressure gradient effect on §* is confined to some region

X, 8 x s Xes the integral in this Eq. can be written as

ae_% .
®i o ey B xf oo pyd8* R L
J | (xﬁi)ﬁ_dx _di ; (x-E) 3 dE +J’ (x-Ei5 4k
o (x-£)ylrsw? xi (-8)2+6%0  Jxp (x-8)24o4?

5 dé =

(B-1)
o (x-£)2+5%2

f’ (=0 G

whete xi(+0) and X >> X, are the effective start and enq of the interaction
region, respectively, Here, the first and third intégrals account for the con-
Stunt pressure vegions of the basic flow while the second is the contribution
of the interaction regiom. Wé now consider Eq. B-1 applied to some streaﬁ—

wise point x within the interval Xi 2 x £ x. and proceed to examine c¢ach of the

£
 three integrals on the RHS. |
-1/2
y~1/

R Taking note of the fact that 53* = 1.73¢ (x vV1i-C

p,basic and choosing

X small encugh that C (xi) < 0, the first integral can be rewritten

p,basgic

as

. ' X,

e Ge-8) (a8 ¥/ amyde *

—2 (x-£)dt
1.73¢

(e-8) P () o VELGem8) 24652 () ]

(3-2)
©
Now since &6*“¢ is small compared to unity and since Eg. B-1 pertains to
X 2 %y, 4% makes a significant contribution to the integrand only withid a _
distance,ﬂxég*(xi) of the end point £ = X3 consequertly, this RHS integral can

be further decomposed into the two parts

21



.-.-'. (x-€) dE
o fr‘(X“E) VP" (x—g) +zz

which standard integral tables evaluate-as

1 x+(x, -2 )+2vx(x Y _ [.“ (K-x 52+£2

-1 i i L1 _3
og D) + log (8-3)
Vx R 2fxi !(x—x YU+R +2£(x—x 3

We note that the second term vanishes while the first gives a‘non—singular
resu;t at x = xi.'Mgs;*importantly, wa note that choosing X = o= 63*(x1)
eliminates the first term at all x 2 X leaving only the second term which
vanishes at x = Xy and as x >> Xyeo The first integral in B-1 can therefore
be made negligiable by this suitably small choice of Xy .+

Qubstltutlng the value of 5 % jnto the thirxd 1ntegra1 on the Rﬁé of (B-1)

and proceeding in the same manner as we did with (B-2), this integral can be

written

Lo - d . * ; | Xf+k
2 (x-£} 3 dg ac + 1 (X—E)dE - (B-4)

where the 6*2 term in the integrand is presumed to have a negligable effect

beyond some small distance k from Ko Again using standard integral tables,

the RHS becomes

1 | xgtkex ] 1 '(xf+k-x)2+k2
= — log|— + log )
V% xf+k+x—2Vx(xf+k{i ZJEE (x %} +k

+This choice of x, is analogous to the use of a Lighthill correction factor in

, i X . X : , ,
'Yq.-8c to wipe olt the lesding edge contribution in the alternative gingular
airfoil integral formulation. '



which we see vanishes at x = X and as x << X, fo; all k provided Xe is taken
sufficiently large.

We have thus shown that provided Xy and xg are chosen sufficiently small ',
and large, respectively, only the second integral on‘thé.RHS of Eq. B~1 does in
fact effectively contribute to the induced pressﬁre field as assumed, and that
ACP vanishes at these end points. Moreever, since this type of integral is in
effect a solution to LaPlaces Equatiom, dACp/dx inherently vanishes at these
paints as we11;26 In éarrying out-numerical evaluations of the second integral,

it proves convenient to elimmate the derivative of &% through integration by

pafts so as to obtain
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